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Abstract

An explicit expression is derived for the probability of an arbitrary
energy state of a Gaussian wavepacket confined to a square well. Approx-
imations are made to do so; the error introduced is bounded.

1 Introduction

Despite its simplicity and familiarity to most students of physics, the so-called
“square well” model of particle motion [1, 2] in quantum theory is still applicable
to new situations in practice. One of these arose recently in an explanation of
spin flips in Bose-Einstein condensed atomic vapors [3] confined in magnetic
traps.

One of the problems encountered in making simplified mathematical models
of particle motion in confined spaces such as traps arises from the boundary con-
ditions. For example, the infinite square well model requires a trapped particle
to have a vanishing wave function outside the trap walls. However, the math-
ematical functions used to describe wave functions of particles moving in traps
are frequently taken to be of Gaussian form, and the infinite wings of Gaussian
functions are certainly non-zero outside the walls of the trap potential.

2 Model

In this paper we will use a Gaussian wave packet to describe a particle moving
in a one-dimensional square well. Our wave function, like all wave functions,
must obey Schrodinger’s equation [1]:
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We will start at t = 0 with a Gaussian wave function of the form:

U(z,t) + U(z)P(z,t) = ih%\l’(w,t). (1)

¥(z,0) = Nexp [—%] eire/h, (2)



which is initially centered in the well, and will then evolve in time according to
equation (1).

The wavefunction can be rewritten entirely as a function of the distance from
the center of the well:

2
¥(z) = T(z,0) = N exp [_%] (@ L/2) gikL/2 3)
where we’ve begun to use the particle’s wave number k = p/h in place of mo-
mentum p and ¢ (z) = ¥(z,0), both for notational simplicity. Throughout this
paper, we assume for convenience that k is positive; it is easy to modify our
calculations for a negative momentum. The parameter o governs the “size”
of the Gaussian. It is roughly the width at 1/2-height. The factor N is the
normalization constant; it is discussed more fully in section 3.

The model we are using implicitly considers L to be the fixed length of the
potential well. The values of z, @ and k are meaningful only in relation to
this fixed value. To make this more clear, and to simplify later calculations, we

rewrite our wave function in terms of three dimensionless variables:

z/L a=a/L k=kL (4)

T

This gives us
—(@—-1/2°| Za i
'lp(f) N exp l ( 2a2/ ) ] ezk(z 1/2)6 k/2, (5)

and the well now extends from Z = 0 to ¥ = 1. For several values of @, Figure 1
shows the probability distribution |1 (Z)|?, which we will refer to as the “packet”.
Wider packets have larger values of @. The probability of finding the particle
in an infinitesimal interval d7 is given by | (Z)|? dZ. Note that the momentum
term does not affect the packet graph.

Of course, energy and momentum are quantized in a square well:

nw K2

and En = %ki,

and in our dimensionless notation the momentum is:

k, =nm

The primary challenge that we will consider is to obtain a simple predictive
understanding of the probability distribution of energies that are possible for
the particle. That is, we want to be able to predict reliably, by reference only to
the two packet parameters k and @, what are the most probable particle energies.
The answer is not likely to be simply E = k%h?/2m because of the Heisenberg
Uncertainty Principle: the spatial confinement of the Gaussian function roughly
within the range |T — 1/2| < @ implies the presence of ”uncertainty momenta”
because of the confinement, independent of the value of k.
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Figure 1: |¢ (Z) |?> for @ = 1/2,1/8,1/20.

That role of @ deserves further discussion. It does not simply control the
width of the packet. Rather, it serves as a kind of “wave-particle selector.”
The larger the value of @, the less spatially localized the packet is, and the
more it behaves like a wave. Consequently, higher values of @ imply (by the
Uncertainty Principle) that the packet will have a smaller variance (i.e., less
energy variability). This discussion will be made quantitative when we derive
an expression for the energy probabilities.

As we mentioned, any Gaussian wave function has non-zero value outside
the walls of the square well. This will lead to approximations in obtaining our
energy estimates, and thus to the need to establish careful bounds on the error
introduced by the approximations. Gaussian wave packets are sometimes used in
textbook discussions of particle behavior, but elementary texts don’t generally
carry through either an estimate or a careful bound of the errors introduced.
We will show that this is not difficult to do. Before we can actually calculate an
expression for the energy probabilities, we need to solve for the normalization
constant. In doing so, we will also do the bulk of the work required to bound
our errors.

3 Normalization and Error Bounding

As stated, the factor N is the normalization constant. To solve for it, we use
the fact that the sum of the probabilities for all locations is 1: fol [¥(z)|2dT = 1.
After we eliminate the factors with absolute magnitude equal to unity (recall
lei?| = 1, for any real ¢), this simplifies to

N2 /0 Cexp - @E-1/2? /@) @z =1. (6)

With these limits of integration, this integral cannot be carried out analyti-



cally, but we can evaluate

N? /_ ” exp [_ x —1/2)° Ja?| dz.

However, in this integral the contribution of the wavefunction outside of the po-
tential well is physically incorrect, because of the infinite height of the potential
wall, and should be discarded. Instead of discarding it, we will include it but
show carefully under what conditions the error introduced is so small that it
can be tolerated. The form of the bound we will establish for the error will tell
us under what parameter conditions the model is physically reliable.

We begin by separating the integral into two parts. The first part is our
approximation; the second part is what we will bound to establish the maximum
error. Note that the following equivalences are valid for our wave packet, but
not necessarily for all wave functions.
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The first of these integrals is fairly standard; looking up the result [4] gives
N?[ay/m] =1, or

N =1/y/av/x. (8)

To bound the error (the second term in eqn. (7)), we first make two cosmetic
changes of variables: y =T — 1/2 and then z = 2y. We obtain:

Enorm = 2/00 exp [— z-1/2)° /62] dz — /00 exp [—-2%/4a®] dz  (9)

Now note that z > 1 over the entire range of integration, so 22 > z. We can
therefore use the following inequality to bound the error:

Enorm = / exp [—2* /4] dz
1
< / exp [—z/4a?] dz
1
= 4ale /W (10)

Figure 2 shows the error as a function of @. We know that the normalization
integral must equal 1. Therefore, we will want to confine our attention to the



0.3
0.25

0.2

Enorm 0.15
0.1

0.05

0 0.1 0.2 0.3 0.4 0.5
a

Figure 2: Error bound for normalization constant

range of values of @ where E,,.,, <€ 1. For the sake of concreteness, we will
assume from now on that @ < 1/8, or E,orm < 7.03 x 10° (this might seem
needlessly small, but it will keep later error bounds manageable). See fig. 1 for
a picture of the packet with @ = 1/8.

4 Background Details

We are almost ready to derive an explicit expression for the energy probabilities,
but first we review some background information in the general case. Let ¥(z,t)
be the wavefunction of a particle confined to one dimension, and let U(z) be the
potential energy function. Then ¥ must be a solution to Schrédinger’s equation
(1). For a “square well” potential, one for which U = 0 between two infinite
potential walls at x = 0 and £ = L (which we write as T = 0 and T = 1), the
wavefunction of the nth energy eigenstate can be expressed as

U, (z,t) = e Ent/"/2sin (naT)
= Fntlty, (%), (11)

The superposition principle states that any linear superposition of valid wave-
functions is a valid wavefunction. The most general solution to Schrédinger’s
equation is therefore an infinite sum of stationary states:

U (z,t) = icn\Iln(T,t)
n=1
D cnem iy, (), (12)

Il

each term in the sum corresponding to a specific particle energy F,,.



A particle defined by the sum in eqn. (12) will have a probability of being
found in the nth energy state given by p, = |¢,|* . Our main goal is the ability
to calculate the values of the ¢,,’s in order to predict the range of energies that
will be present, when ¥(%,0) is given by the Gaussian function in eqn. (5).

To solve for c,, first note that the functions 4, (F) = v/2sin (n7Z) are or-
thogonal. Precisely, this means that

1
|| 4(@0(@) 42 = 5n (13)
0
where §,,, is called the Kronecker delta and is defined as
_J 0 m#n
e A (14)

and where ¢}, () denotes the complex conjugate.
Now consider the general solution to the Schrédinger equation at time ¢ = 0:

U0 = 3 cnthn(@). (15)

Note that the time exponential has dropped out. Now multiply both sides of
this equation by v (Z) and integrate. Since ¥, (T) = 1¥m(F), the Kronecker
delta will cause all the terms to cancel except for the case n = m [2]:

/0 G@E0E = S / W (@) (T) B

= i Cnlmn
n=1
= Cm, (16)

and this is the expression we will need to evaluate.

5 Solving for Energy Probabilities

Now we are prepared to solve for ¢, in the case of our Gaussian wave packet. The
integral is challenging because we can’t evaluate it exactly, and approximations
will be needed. First, note that we will be integrating from T = —o0 to 0o, not
0 to 1. As with the normalization constant, the integral can only be done if we
integrate over all the reals, and we find an expression similar to eqn. (7):
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/_ " Y@ Nn(®) dF — By (17)

Using the first integral as our approximation, we again make the cosmetic
substitution y = F — 1/2 . Using the expression from eqn. (16) and the packet
from eqn. (5), we find

Cn = A/ e V20 kv i [n(y + 1/2)] dy, (18)

where A stands for the constant factors: A = /2/(a/7)e*/2. Note that, using
the dimensionless y, 1, (y) = V2sin [n7 (y + 1/2)].

Now we use Euler’s Theorem (2isin ¢ = e!® — e~#%) to replace the sin term
with two exponentials, and then combine like powers:

oo _

e = {é/ e_y2/252eikyeinﬂ'(y+1/2) dy} —{n > -n}, (19)
21 J_

where the notation {n — —n} means to rewrite the term written explicitly,

replacing all n’s with negative n’s. This leads to

Cp = {?ei"”/z /00 e_y2/2ageiy(k+"”)dy} —{n — —n}. (20)
? —0oQ

This integral can be looked up, although usually in a trigonometric form [4]:

= 2 = 2 ib T —b/4
/ e cosbudu :/ e el dy = [ —e™V /e, (21)
—o00 — 00 a

To see why the transformation holds, use Euler;s Theorem again: e = cosf +
isin@, and note that sin is odd, so that [e~*“ isinbudu converges due to the
exponential, but is 0 due to the sin term. Using this formula and rearranging,
we get

o = (VEr/2)idaen
y {efinwe*a2("7ffﬁ)2/2 _ e—ag(mr+E)2/2} . (22)

Noting that e~*"™ = (—1)", we can rewrite this as:
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Figure 3: p, vs. n for k=0, k, = 20 and k = 307, ko = 10

Cn = i /a\/,’_reik/Qeznw/Z

X {(—1)"6_52("”_%)2/2 - e__2("”+z)2/2} . (23)

From this we can directly obtain

|cn| =a /7 {( 1)"e —a’(nn—k)%/2 _ —_2(nﬂ+z)2/2}2_ (24)

In anticipation of our analysis, we now define

ko =1/a. (25)
This cosmetic change will make the interpretation of our results slightly eas-

ier. By convention, we use @ when discussing the original packet and k, when
discussing the energy distributions. We now have

Pn = ‘,f—% (e /L g (k)24 }2 : (26)
@

Figure 3 shows p,, as a function of n for two different sets of parameters:
one with £ = 0 and a relatively large value of k,, and one for & = 307 and
small k,. The graph is jagged because p, is only defined on the integers, but
we have interpolated a continuous curve to add visual clarity. Also, note that
when k = 0, p, is exactly 0 for even n.

6 Analysis of Results

The expressions we have derived for ¢, and p, are accurate, but a reasonable
approximation will allow us to write them in a much simpler form. We start by
examining the ratio of the two exponentials in eqn. (23):



ratio = exp [—(nm + k)?/2k2] [ exp [—(nm — k)* /2K2]
€—2En7r/k%t (27)

The top exponential will quickly become negligible compared to the bottom,
provided k is sufficiently large compared to k2, which we have kept large (be-
cause @ is small) to manage the error. For example, if k, = 10 and k = 10m,
then at n = 1 we have ratio = e~™ /5 ~ .139. Larger values of n will only
decrease this ratio, with the exponential form ensuring that the ratio rapidly
approaches zero. We therefore impose an additional constraint on our parame-
ters: from now on, we assume that k > k2 /7, with the effect that we can ignore
the top exponential (we say approximately greater because it is convenient to
choose k an integral multiple of 7, as we show in this section). This allows us
to rewrite our results in a much simpler form:

e~ (=1)" /\/7_r/ka eiE/2ein7r/267(n7r7E)2/2ki (28)

and

o VT B2 /2 (29)

n ~

x

This is a Gaussian distribution, as is made obvious by our &, notation. This
packet is in some sense the complement to the Gaussian packet we began with.
It is centered at nm = k or n = k/7, and its width is controlled by k, (note the
lack of the 1/2-factor in the exponent). The effect of requiring a large k is now
clear: it ensures that the probability distribution is essentially Gaussian, and
that we can reasonably call one energy level the “primary” energy level. By the
Uncertainty Principle, as the position wavepacket becomes narrower, the range
of possible energies becomes broader, and conversely. This is confirmed by the
form of these two packets and the inverse relation between @ and k.. We can
conclude that the range of likely energy levels for the particle is roughly

n==Fk/mr+tky,/4 neN (30)

This is exactly what we set out to do. Given only the momentum and width of
the original packet, we have a simple equation that fully describes the energy
distribution within the well. The only remaining task is to manage the error.

7 Error

We have obtained our primary goal—an explicit formula which gives the prob-
ability of an energy state as a function of the packet’s initial momentum and
width. We must now bound the error in our formula, given in eqn. (17). This
is very easy to do—in fact, we can use almost the same bound we used for the
normalization constant! This results from a very simple pair of inequalities:
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B = 2] d@un@dz

= 2V2 /1 Ooz/i(f)sin(mrf)df
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2v2 [ fui@) do
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2v/2 /OO exp [—(z — 1/2)*/2a°] dz, (31)

which, aside from a few constant factors, is the same as the expression bounded
in section 3. Using identical logic, we obtain:

Eio < 8V2a% /5% (32)

Unlike section 3, the exact value of the original integral is unknown. How-
ever, we can look at the ratio of error to approximation. Taking the absolute
value of ¢, (we are only interested in the magnitude of the error),

feal =
Using this expression, the error can be made less than any desired percentage
of the approximation, by choosing a small enough value of @. Figure 4 shows
this in the case @ = 1/8, plotted as a function of the distance |nm — k|. Tt is
clear that the error is tolerable over the important range of values. In this case,
for |nm — k| = 24 (i.e., at n = k/7 % 3k,), the percent error is 1.13%. The

Eir _ 8V2a° e—1/8a ;@ (nm—k)?/2 (33)

10



exponential dependence on @ means that only a slight decrease in @ is needed
to drastically reduce this.

8 Summary

We began with a Gaussian wavefunction, eqn. (5), in an infinite square well.
The goal of our analysis was to predict the likely energies for the system. Our
first task was to normalize the wavefunction. In doing so, we made approxima-
tions and exhibited a careful bound, eqn. (10), on the error introduced. This
also established the range of parameters for which our model is physically mean-
ingful. We then used the theory of orthogonal functions and the Superposition
Principle to show how to express any wavefunction as an infinite sum, and to
calculate the coefficients of the terms of that sum, eqn. (16). The absolute
square of a particular coefficient gives the probability of the corresponding en-
ergy level. We then applied the general expression to our specific wavefunction.
This again required approximations, and the error was also bounded. Finally,
we imposed the additional condition that k& be large enough so that we could
approximate our expression for p, as another Gaussian. This allowed us to
derive a very simple expression for the most likely energy levels of the system.
The case where k is small can be examined by the reader.
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